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1 Cell contraction speed

Our model of cell motility is based on the assumption of a constant contraction rate. In particular, we assume

that the contraction is not hindered by the opposing forces exerted by the stretched binding bridges and

that, based on experimental data, the relevant contraction rates are around ∼ 10µmmin−1, which are much

smaller than the speed of single myosin heads (∼ 1µm sec−1 [1]). In this section we discuss this assumption

and show that the main results can be reproduced with a force-dependent contraction rate with suitably

chosen parameters.

The total force Fµ exerted by the myosin motors has to balance both the resistive force due to the binding

bridges Fb and the viscous drag Fν of the cytoplasmic flow caused by the deformation:

Fµ = Fb + Fν . (1)

Based on in vitro data of the velocity-load relationship of muscle myosin [2], we assume that the total force

of all myosins engaged in cell contraction can be approximated by a linear velocity-load dependence

Fµ = Fs −
Fs

v0

v ≡ Fs − λv . (2)

where Fs is the maximum, or stall, force, corresponding to the maximum force that can be generated by

myosin. The viscous term in Eq. 1 can be written as

Fν = ν v . (3)

The force balance therefore leads to an expression for the speed

v =
Fs − Fb

λ + ν
. (4)

The parameters in this equation can be estimated from previous studies. The maximal force Fs can be

estimated from the study of the speed of furrow ingression in cytokinesis [3]. There, the driving force was

argued to be F ∼ 1nN, which can be viewed as a lower bound for the maximal force. The force exerted

on the bindings is equal to the experimentally measured pole forces, i.e. Fb ∼ 0.2nN, and is five to ten

times smaller than the maximal force. A single myosin moves freely with vsingle
0 ∼ 1µm/s and stalls at

F single
s ∼ 1pN, yielding λsingle

∼ 10−6N s m−1. In the extreme case where all myosins pull on one filament in

one direction we have v0 = vsingle
0 . For a stall force of Fs ∼ 1nN, see above, we find λ ∼ 10−3Ns m−1. Note,

however, that the number of motors in a cell is large, indicating that the organization of myosins is more

complex. Thus, the total contraction velocity v0 may be considerably lower than vsingle
0 .
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To estimate the viscous drag, we follow Ref. [3] and model the cell as a cylinder of length h0 ∼ 20µm

and radius r ∼ 5µm that is compressed along its length axis. 1. Using the results from Ref. [3] we find

v ≡ ḣ = −

σzz

3µ
h(t) . (5)

In our case, σzz is the contractile stress acting on the top and bottom of the cylinder, while µ ∼ 300Pa s is

the cytoplasmic viscosity. The contractile force needed to balance the viscous stress is

Fν = πr2σzz = 3π
r2

h
µv ≡ νv (6)

with ν ∼ 3 · 10−3N s m−1. In experiments, a contraction lasts for τ ∼ 60s and results in a length reduction

h0 − h(τ) ∼ vτ ∼ 10µm, giving Fν ∼ 0.5nN.

The denominator in Eq. 4 represents a total friction term of order ∼ 10−3N s m−1. In the case where

the pole force can be neglected in comparison to the maximal force, force balance results in a constant

contraction speed v = Fs/(ν + µ) ∼ 10−6m s−1 in agreement with experimental results 2. However, pole

forces can become comparable to the maximal force if the off-rate is very low. To investigate this effect we

have performed simulations taking the relation Eq. 4 into account.

In a first set of simulations we have examined the effect of a stall force that is much larger than the

maximal pole force. Specifically, we set Fs = 10ksR, which is approximately 10 times the maximal pole

force observed for the standard parameter set, in agreement with above estimates. The load-free contraction

velocity was chosen to be v0 ∼ R/τ ∼ 10µm min−1, as in the old simulations. This choice of parameters

corresponds to an effective friction of (ν + λ) ∼ 6 · 10−3N s m−1 in agreement with the above estimates.

The red solid line in Fig. S1(a) shows the cell speed as a function of the off-rate k
−,b for these new

simulations. The red dotted line is the curve from Fig 6d in the manuscript, i.e., for simulations in which the

velocity was load-independent (v = v0). The deviation between the two curves becomes significant only for

very low off-rates. Moreover, both curves are rather flat and do not display the “biphasic” relationship seen

in other studies [4]. The blue curve in Fig. S1(a) shows the maximum pole force for the new simulations. For

low off-rates, this pole force approaches the stall force. In the load independent simulations presented in the

main text, the radius rf of the ellipse at the end of the contraction is fixed at 0.5R. Now however, this radius

is no longer fixed and depends on the off-rate. This is shown by the green curve which demonstrates that,

as expected, rf increases for decreasing values of the off-rate. Finally, we show in Fig. S2 the contraction

speed vcon during the contraction cycle as a function of the off-rate using a color scale. The plot shows that

1This estimate neglects the elastic properties of the compressed material. Furthermore, it does not take into account that

the cytoplasm has to flow through a porous medium. Also note that the force that opposes myosin-contraction may arise from

the rupture of cross-links in the acto-myosin cortex itself and the reorganization of the cortex. To clarify this issue one should

study the contraction of an isolated acto-myosin cortex patch (i.e. without cell attachments nor viscous drag). In this context

one should also quantify the effect of myosin-crosslinking vs other cross-linking on cortical viscosity in myoII-null mutants.
2Note, that here the maximal force Fs results in cortical motion: The stalling of the myosins leads to a decrease of the

viscous drag. The load on the motors in turn drops below Fs. Therefore, myosin motors can always operate at their total

maximal force.
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Figure 1: Cell speed as a function of the off-rate for (a) Fs = 10ksR, v0 = Rτ−1, (b) Fs = 1ksR, v0 = 10Rτ−1.

Red solid curve: cell speed when force-velocity relation is taken into account. Red dashed curve: cell speed

with constant contraction speed. Green curve: Major axis of ellipse at end of contraction phase. Blue curve:

maximal pole force during contraction.

vcon becomes only appreciably different from v0 for very small off rates. For these values, the contraction

velocity becomes small during the later stages of the contraction cycle. For most values of the off-rates,

however, the contraction velocity is close to v0 throughout the cycle.

In a second set of simulations, we examined the case of a stall force that was close to the maximal pole

force in simulations with constant contraction speed and for the standard choice of parameters. Thus, we set

Fs = 1ksR corresponding to ≈ 1.1 times the maximal pole force. In order to obtain an effective contraction

speed v ∼ 0.1v0, we set v0 ∼ 10R/τ ∼ 1.6µm sec−1, corresponding to the speed of free myosin motors. Fig.

S1(b) shows the cell speed as a function of the off-rate k
−,b for these simulations. In contrast to the previous

case, the pole force (blue curve) now reaches the stall force for small off-rates. This can be understood by

realizing that the the stall force of 1 ksR is not large enough to cause a significant loss of attachments. In this

regime, the contraction stalls completely shortly after onset, as indicated by the fact that the final radius

approaches rf = 1 (green curve) and that the contraction speed drops to 0. In contrast, for k
−,b slightly

larger than the standard choice (k
−,b = 0.6τ−1), the off-rate and the contraction rate is so large that the

the ellipse contracts to a point. This can be clearly seen in the green curve which plots rf = 0 as a function

of the off-rate. Due to asymmetric detachment rates, the center of the ellipse is shifted to the right, leading

to a cell speed larger than 1Rτ−1.

In conclusion, we have shown that our main results still hold when a force-dependent contraction rate

is taken into account, provided that the stall force is much larger than the pole force (see Fig. S1(a)). We

estimate that the maximal contraction force that can be exerted by cellular myosin exceeds the typical pole

forces observed in experiment. Moreover, we find that in this regime our model assumption of a constant
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Figure 2: Contraction rate as a function of time and k
−,b for Fs = 10ksR, v0 = Rτ−1. The contraction rate

is nearly constant over time for most off-rates.

contraction rate can be justified.

2 Further simulations results

In Fig. S3 we demonstrate how simulation data for a single cell relates to the average data discussed in the

main text. The contact area at the beginning of the contraction phase is represented as an ellipse which is

uniformly covered with attachment points (as in the ellipse at t = 1.0 in Fig. S3). The ellipse is contracted

linearly in time and its position is adjusted according to the force balance of the binding bridges (resulting in

the smaller ellipses in Fig. S3). From a single simulation run we collect the set of point forces as a function

of time (black and green arrows) which are then averaged over an ensemble of 1000 runs to give average

stress patterns (gray pattern). The position of the last focus (green arrow) is tracked in time (black line).

Its position at the end of the cycle defines the rear most edge of the contact area at the start of the new

cycle (ellipse at t = 1.0, compare also to Fig.1 (e) in the main text). The red curve shows the ensemble

average of these curves. The average cell speed (which is plotted in Fig.6 in the main text) is defined as the

average rear most position at the end of the cycle divided by the length of the cycle.

During the contraction phase, part of the cell-substratum bridges detach, see arrows in Fig. S3. Fig.

S4 shows the ensemble average of distribution of attachment points (bridges) at different times. Parameter

values are the same as used in Fig.3 in the main text. Clearly, only bridges close to the center of contraction

remain at the end of the contraction phase. Note, that the center of contraction does not necessarily coincide

with the center of the ellipse. Preferential detachment at the rear leads to a sideways shift of both the center

of concentration and the contracted ellipse.

Fig. S5 shows the distribution of bridges averaged over time similar to the stress pattern in Fig.4 in

the main text. Similar to the stress pattern, the bridge distribution depends most strongly on k
−,b, k+, ∆

and ks. Clearly, the density decreases for increasing k
−,b or decreasing k+. The dimensionless parameter
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Figure 3: Overlay of single run data and ensemble average over 1000 independent runs for the standard

parameter set. Shown are the average stress patterns for t = 0.2, 0.4, 0.6, 0.8, see also Fig. 3 in the main

text. The size and shift of the contracted cell is indicated by the inner ellipses. Overlaid are force vectors

for a single run, indicating also the discreteness of the attachment points. The force vector of the rear most

focus at the respective time points for that single run is shown in green. The time course of this positions is

shown as a black curve. The red curve and the red shaded area are the ensemble average of the position of

the rear-most focus and its standard deviation, respectively. The new cycle starts with a new ellipse whose

back coincides with the position of the last remaining focus from the previous cycle, as indicated by the

ellipse at t = 1.0.
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Figure 4: Average attachment distributions over 1000 simulation runs with time expressed in units of the

contraction cycle. The attachment density is shown in a gray-scale with black corresponding to ≈ 1.8µm−2.

α = Rks∆/(kbT ) controls the force dependent part of the detachment rate. A larger α speeds up detachment

leading to a smaller average bridge density. Note, that unlike the stress pattern, the distribution of bridges

does not scale with ks. Rather it depends on ks and ∆ via α alone. In contrast to the stress pattern,

the bridge density is strongly affected by the amount of contraction λ. The lower density for large λ is

compensated by a larger force contribution from each bridge such that the magnitude of stress is roughly

independent of λ. Decreasing the relative adhesiveness k
−,f/k

−,b has only little effect on the average bridge

density but shifts the distribution more to the front.

In Ref. [5] the pole force is introduced as a measure for the overall contractile force exerted on the

substratum. It is defined as the stress components σ ≡ (σ̄xz, σ̄yz) parallel to the substratum integrated over

the front half of the cell[5],

Fb ≡

∫
x>x0

σ(x, y)dA . (7)

The orientation and origin of the frame of reference are based on experimental data on the cell outline.

Since our model of cell contraction does not explicitly describe the cell outline, we use a slightly different

definition of the pole force. In our definition, the pole force at the front is the sum of all (point) forces

exerted in the negative direction

Ff ≡ ks

∑
ux<0

u =
∑

σx<0

σ . (8)

This definition is equivalent to Eq. 7 when the origin x0 is chosen to be the center of contraction, i.e.
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Figure 5: The density of attachments, averaged over an entire contraction cycle, for different sets of model

parameters. Black/white corresponds to densities ≈ 2.15µm−2 and < 2.15·10−3µm−2, respectively. The time

averaging was achieved by rescaling and overlaying the contracted ellipses. The upper pattern corresponds to

the default set of parameters: k
−,b=6·10−1τ−1, k

−,f=0.5k
−,b, k+=6·10−1τ−1, α=125, λ = 0.5, and N = 200.

For this set of parameters, the maximal density is ≈ 0.64µm−2. In each row one model parameter is varied

while keeping the remaining parameters fixed.
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Figure 6: Comparison of pole forces. For the standard parameter set, the definition by del Álamo and our

definition yield similar quantitative results.

ux(x0) = 0. Note, that in the definition Eq. 7 a shift of the reference frame (i.e. the cell outline) leads

to lower pole forces as the origin moves away from the center of contraction. In contrast, our definition is

independent of the location of the cell outline.

Fig. S6 shows that for the standard parameter set both definitions give qualitatively and quantitatively

very similar results. In order to apply Eq. 7 to our simulation data, we chose the center of the contracted

ellipse as x0. Note, however, that the center of the contraction area will in general be different from the

center of the cell outline.

Fig. S7 shows the average pole force over one contraction cycle as a function of the off-rate. The pole

force gives an estimate of the maximal force supported by the binding bridges. As can be seen from Fig.

S7, for very large k
−,b the detachment force is insufficient to support the traction force that balances the

viscous drag of the protruding cell (∼ 0.1pN [5]). For approximately symmetric cells, force balance then

implies that a forward protrusion is accompanied by a backward motion of the same order. Hence, there is

no net motion for sufficiently large k
−,b.
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Figure 7: The average pole force exerted during one contraction cycle as a function of k
−,b.
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